Когда речь заходит о применении машинного обучения, чаще всего разговоры ведут о медицинской сфере. И это не удивительно: огромная индустрия, которая генерирует феноменальный объем данных и доходов, в которой технологические достижения могут улучшать или спасать жизни миллионов людей. Едва ли неделя проходит без появления исследования, которое предполагает, что алгоритмы очень скоро будут лучше экспертов выявлять пневмонию или болезнь Альцгеймера — заболевания сложных органов, от глаза до сердца. И все к этому идет, но…
Одним из решений может быть исключение алгоритмов, которые не могут объяснить сами себя или не полагаются на хорошо понятную медицинскую науку. Но это может помешать людям пожинать плоды полезной работы таких алгоритмов.
Создание стандартизированной системы клинических испытаний и тестирования, которая в равной степени будет применима к алгоритмам, работающим по-разному или использующим разные входные данные, будет сложной задачей. Клинические испытания, в которых используются выборки небольшого размера, например, с алгоритмами, которые пытаются персонализировать лечение для отдельных людей, также будут сложными. С небольшими выборками и слабым научным пониманием происходящего невозможно будет определить, преуспел алгоритм или потерпел крах, потому что он может быть неплохим в целом, но показать неудачный пример.
Разумеется, в этой области ведутся дебаты о том, не рискуем ли мы с этим подходом упустить из виду более глубокое понимание, которое в конечном счете окажется более плодотворным — например, для поиска новых лекарств.